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Abstract. The Nagel-Schreckenberg model is a simple cellular automaton for a realistic description of
single-lane traffic on highways. For the case vmax = 1 the properties of the stationary state can be obtained
exactly. For the more relevant case vmax > 1, however, one has to rely on Monte Carlo simulations or
approximative methods. Here we study several analytical approximations and compare with the results
of computer simulations. The role of the braking parameter p is emphasized. It is shown how the local
structure of the stationary state depends on the value of p. This is done by combining the results of
computer simulations with those of the approximative methods.

PACS. 02.50.Ey Stochastic processes – 05.60.-k Transport processes – 89.40.+k Transportation

1 Introduction

Cellular automata (CA) do not only serve as simple model
systems for the investigation of problems in statistical
mechanics, but they also have numerous applications to
“real” problems [1]. Therefore it is not surprising that in
recent years CA have become quite popular for the simu-
lation of traffic flow (see e.g. [2,3]).

CA are – by design – ideal for large-scale computer
simulations. On the other hand, analytical approaches for
the description of CA are notoriously difficult. This is
mainly due to the discreteness and the use of a parallel
updating scheme (which introduces “non-locality” into the
dynamics). In addition, these models are defined through
dynamical rules (e.g. transition probabilities) and usually
one does not have a “Hamiltonian” description. Therefore
standard methods are not applicable. Furthermore, one
has to deal with systems which do not satisfy the detailed
balance condition.

However, there is a need for exact solutions or, at
least, for good approximations. These results as well as
other exact statements may help to greatly reduce the
need for computer resources. The interpretation of sim-
ulation data is often difficult because of the “numerical
noise” and finite-size effects. Even in the cases where an
exact solution is not possible, a combination of analyti-
cal and numerical methods might provide better insights.
This is especially true for non-equilibrium systems where
only a few exact or general results exist which could serve
as a guideline.

In recent years, several analytical approximation meth-
ods for the Nagel-Schreckenberg model [4] for single-lane
highway traffic have been proposed [5–8]. All of these
approximations yield the exact result for the stationary
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state in the case vmax = 1. However, these investigations
focused on the so-called fundamental diagram, i.e. the
flow-density relation. Here we will reinvestigate these ap-
proximations and calculate further quantities of interest
in order to determine the accuracy. We will also discuss
several limits and emphasize the effect of the braking prob-
ability p. We focus on the effect of p on the microscopic
structure of the stationary state. Such microscopic char-
acterizations have recently been used successfully for the
asymmetric exclusion process [9,10]. Apart from vmax = 1
here only the case of vmax = 2 is investigated since one
does not expect a qualitatively different behaviour for
vmax ≥ 2 [6].

The paper is organized as follows: First we will briefly
recall the definition of the Nagel-Schreckenberg model in
Section 2 and the different analytical approximations in
Section 3. In Section 4 several physical quantities, e.g. the
fundamental diagram, headway and jam-size distributions
and correlation lengths, are calculated using the analytical
results. In Section 5 the predictions of the approximations
are compared with each other and with results from com-
puter simulations. The local structure of the stationary
state is investigated as a function of the randomization p.
In the final Section 6 a summary of the results together
with our conclusion are given.

2 The Nagel-Schreckenberg model

The Nagel-Schreckenberg (NaSch) model [4] is a proba-
bilistic cellular automaton. Space and time are discrete
and hence also the velocities. The road is divided into
cells. The length of a cell is determined by the front-
bumper to front-bumper distance of cars in the densest
jam and is usually taken to be 7.5 m. Each cell can either
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Fig. 1. Configuration in the Nagel-Schreckenberg model. The
number in the upper right corner gives the velocity of the car.

be empty or occupied by just one car. The state of car
j (j = 1, . . . , N) is characterised by an internal parame-
ter vj (vj = 0, 1, . . . , vmax), the instantaneous velocity of
the vehicle. In order to obtain the state of the system at
time t + 1 from the state at time t, one has to apply the
following four rules to all cars at the same time (parallel
dynamics) [4]:

R1 Acceleration: vj(t+ 1/3) = min(vj(t) + 1, vmax)
R2 Braking: vj(t+ 2/3) = min(dj(t), vj(t+ 1/3))

R3 Randomization: vj(t+ 1)
p
= max(vj(t+ 2/3)− 1, 0)

with probability p
R4 Driving: car j moves vj(t+ 1) cells.

Here dj(t) denotes the number of empty cells in front of car
j, i.e. the so-called headway. For vmax = 5 a calibration of
the model shows that each timestep t→ t+1 corresponds
to approximately 1 s in real time [4]. For simplicity we
will consider only periodic boundary conditions so that
the number of cars is conserved. The maximum velocity
vmax can be interpreted as a speed limit and is therefore
taken to be identical for all cars. Figure 1 shows a typical
configuration. Throughout the paper we will assume that
the cars move from left to right.

The four steps have simple interpretations. Step R1
means that every driver wants to drive as fast as possible
or allowed. Step R2 avoids crashes between the vehicles.
The randomization step R3 takes into account several ef-
fects, e.g. road conditions (e.g. slope, weather) or psycho-
logical effects (e.g. velocity fluctuations in free traffic). An
important consequence of this step is the introduction of
overreactions at braking which are crucial for the occur-
rence of spontaneous jam formation. Finally, step R4 is
the actual motion of the vehicles.

The NaSch model is a minimal model in the sense that
all four steps R1-R4 are necessary to reproduce the basic
properties of real traffic. For more complex situations (e.g.
2-lane traffic [11] or city traffic [12]) additional rules have
to be formulated.

3 Analytical methods

In this section several analytical approaches which have
been used for the description of the NaSch model are
reviewed. The simplest, a mean-field (MF) theory, com-
pletely neglects correlations. Since MF theory turned out
to be inadequate even for the fundamental diagram, im-
proved methods have been developed which allow to take
into account short-range correlations exactly. All methods
described here are microscopic theories since macroscopic
theories are not able to describe the NaSch model prop-
erly. However, they are extremely useful and accurate for

special variants of the NaSch model, e.g. the VDR model
[13] in the slow-to-start limit.

In the following the analytical approaches are dis-
cussed briefly for the cases vmax = 1 and vmax = 2. All
methods other than MF theory are exact for vmax = 1.
For vmax = 2, on the other hand, they are only approxi-
mations.

Applications of the analytical methods to the calcula-
tion of physical quantities, e.g. the fundamental diagram,
jam-size distributions and correlation lengths, are given in
Section 4.

3.1 Mean-field theory

The simplest analytical approach to the NaSch model is
a (microscopic) mean-field (MF) theory [6]. Here one con-
siders the density cv(j, t) of cars with velocity v at site
j and time t. In the MF approach, correlations between
sites are completely neglected.

For vmax = 1 the MF equations for the stationary state
(t→∞) read [6]:

c0 = (c+ pd)c, (1)

c1 = p̄cd (2)

with c = c0 + c1, d = 1 − c and p̄ = 1 − p. The flow is
simply given by fMF(c) = c1.

For random-sequential dynamics1 the MF approach is
known to be exact for vmax = 1 [4]. For parallel dynamics,
however, MF theory underestimates the flow considerably
(see Sect. 4.1).

For vmax = 2 the rate equations for the densities are
given by [6]

c0 = (c+ pd)c0 + (1 + pd)c(c1 + c2), (3)

c1 = d [p̄c0 + (p̄c+ pd)(c1 + c2)] , (4)

c2 = p̄d2(c1 + c2). (5)

The solution is given by

c0 =
(1 + pd)c2

1− pd2
,

c1 =
p̄(1− p̄d2)dc

1− pd2
, (6)

c2 =
p̄2d3c

1− pd2
,

and the flux can be calculated using fMF(c) = c1 +
2c2. Again the flow is underestimated considerably (see
Sect. 4.1). This is true for arbitrary vmax. The general
form of the MF equations can be found in [6].

1 In random-sequential dynamics in each timestep a cell
which is updated is picked at random.
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3.2 Cluster approximation

The cluster approximation [5,6] is a systematic improve-
ment of MF theory which takes into account short-ranged
correlations between the cells. In the n-cluster approx-
imation a cluster of n neighbouring cells is treated ex-
actly. The cluster is then coupled to the rest of the system
in a self-consistent way. Related approximations have al-
ready been used (under different names) for other models
[14–17].

In order to simplify the description, we sometimes
choose a slightly different update-ordering R2-R3-R4-R1
instead of R1-R2-R3-R4, i.e. we look at the system after
the acceleration step. Then there are no cars with v = 0
and effectively we have to deal with one equation less. In
the following we will use occupation variables τj where
τj = 0, if cell j is empty, and τj = v, if cell j is occupied
by a car with velocity v. The change of the ordering has
to be taken into account in the calculation of observables.
The flow is given by f(c) = p̄P (1, 0).

For an n−cluster of n consecutive cells with state
variables τ

(n)
j (t) = (τj(t), . . . , τj+n−1(t)) at time t it is

straightforward to derive an exact evolution equation for
the cluster probability P (τj(t), . . . , τj+n−1(t)). One has
to take into account that cars can enter the cluster from
one of the vmax cells to the left of the cluster and can
leave the cluster to one of the vmax cells to the right.

Therefore the state τ
(n)
j (t + 1) of a cluster depends not

only on its state τ
(n)
j at time t, but also on the neigh-

bouring cells (τj−vmax(t), . . . , τj−1(t)) and (τj+n(t), . . . ,
τj+n+vmax−1(t)).

In the stationary state the master equation for clus-
ter τ (n) = (τj , . . . , τj+n−1) of n cells has the following
structure:

P (τ (n)) =
∑

τ (n+2vmax)

W (τ (n+2vmax) → τ (n))P (τ (n+2vmax))

(7)

where τ (n+2vmax) = (τj−vmax , . . . , τj+n+vmax−1). The tran-

sition probabilities W (τ (n+2vmax) → τ (n)) have to be de-
termined from the rules R1–R4. Note that the master
equation for n−clusters involves (n + 2vmax)−clusters. If
the stationary state is translation-invariant the probabili-
ties P (τj . . . , τj+n−1) are independent of j.

In order to obtain a closed set of equations one has to
express the (n + 2vmax)−clusters through the n−cluster
probabilities. At this point some approximation has to
be made. Usual one uses a factorization into products of
n−clusters. We illustrate this for vmax = 2 and n = 3 (see
Fig. 2):

P (τ (5)) = P (τj−2|τj−1, τj)P (τj−1|τj , τj+1)

×P (τj , τj+1, τj+2) (8)

×P (τj+1, τj+2|τj+3)P (τj+2, τj+3|τj+4)
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Fig. 2. Graphical representation of the n−cluster approxima-
tion for a) n = 1 (i.e. mean-field theory), b) n = 2, and c)
n = 3. Shown is the central n−cluster starting at site j and
all clusters which have to be taken into account in the master
equation (7) for vmax = 2.

with the conditional probabilities

P (τ1|τ2, . . . , τn) =
P (τ1, . . . , τn)∑
τ P (τ, τ2, . . . , τn)

, (9)

P (τ1, . . . , τn−1|τn) =
P (τ1, . . . , τn)∑

τ P (τ1, . . . , τn−1, τ)
· (10)

If we denote the probability to find the system in a con-
figuration (τ1, . . . , τL) by P (τ1, . . . , τL) the 1-cluster ap-
proximation means a simple factorization

P (τ1, . . . , τL) =
L∏
j=1

P (τj). (11)

This is nothing but the mean-field theory of Section 3.1.
For the 2-cluster approximation one has a factorization of
the form

P (τ1, . . . , τL)∝P (τ1, τ2)P (τ2, τ3) · · ·P (τL−1, τL)P (τL, τ1).
(12)

The 3-cluster approximation is depicted graphically in
Figure 2c.

In general, the master equation in n-cluster approx-
imation leads to (vmax + 1)n nonlinear equations. This
number can be reduced by using the so-called Kolmogorov
consistency conditions [15]

vmax∑
τ=0

P (τ1, . . . , τn−1, τ) = P (τ1, . . . , τn−1)

=
vmax∑
τ=0

P (τ, τ1, . . . , τn−1). (13)

Nevertheless, a solution is only feasible for relatively small
cluster-sizes [6]. The quality of the approximation im-
proves with increasing n and for n → ∞ the n-cluster
result becomes exact.
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Fig. 3. Fundamental diagram for vmax = 1: Comparison of
computer simulations (•) with the exact solution (full line)
and the mean-field result (broken line).

However, for vmax = 1 already the 2-cluster approxi-
mation is exact [5,6]. The 2-cluster probabilities for the
stationary state are given explicitly by

P (0, 0) = 1− c− P (1, 0),

P (1, 1) = c− P (1, 0), (14)

P (1, 0) = P (0, 1) =
1

2p̄

[
1−

√
1− 4p̄c(1− c)

]
,

where again p̄ = 1−p. The flow is given by f(c) = p̄P (1, 0).
Higher order cluster approximations with n > 2 yield

the same result (14). This indicates that (14) is exact.
Indeed this has been proven in [6] by a combinatorial ar-
gument.

For vmax = 2 already the 2-cluster approximation
yields a nonlinear system of equations which has to be
solved numerically. The fundamental diagrams obtained
from the n-cluster approximation (n = 1, . . . , 5) are com-
pared in Figure 4 with results of Monte Carlo simulations.
One can see a rapid convergence and already for n = 4 the
difference between the simulation and the cluster result is
extremely small.

3.3 Car-oriented mean-field theory

The car-oriented mean-field (COMF) theory [7] is another
possibility to take into account correlations in an analyt-
ical description2.

The rules R1–R4 can be rewritten in terms of dj and
vj only. Therefore the state of the system can be charac-
terized instead of the occupation numbers τj equivalently
by the headways and the velocities3. The central quantity
in COMF is the probability Pn(v) to find exactly n empty

2 A similar method for reaction-diffusion models is discussed
in [18].

3 For a complete equivalence one has to track the position
x1 of one car, e.g. car 1. From x1, {dj} and {vj} one can then
determine {τj}.
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Fig. 4. Comparison of simulation results with the n-cluster
approximation (n = 1, . . . , 5 from bottom to top) for the fun-
damental diagram for vmax = 2 and p = 1/2.

cells (i.e. a gap of size n) in front of a car with velocity
v. In this way certain longer-ranged correlations are al-
ready taken into account. The essence of COMF is now to
neglect correlations between the headways.

Using again the update ordering R2-R3-R4-R1 (see
Sect. 3.2), one obtains for vmax = 1 the following sys-
tem of equations resulting from the master equation for
the stationary state (with Pn = Pn(v = 1)):

P0 = ḡ [P0 + p̄P1] ,

P1 = gP0 + [p̄g + pḡ]P1 + p̄ḡP2, (15)

Pn = pgPn−1 + [p̄g + pḡ]Pn + p̄ḡPn+1, (n ≥ 2)

where g = p̄
∑
n≥1 Pn = p̄[1 − P0] is the probability that

a car moves in the next timestep. ḡ = 1 − g then is the
probability that a car does not move.

As an example for the derivation of these equations
we consider the equations for n ≥ 2. Since the velocity
difference of two cars is at most 1, a gap of n cells at
time t + 1 must have evolved form a gap of length n −
1, n, or n + 1 in the previous timestep. A headway of
n − 1 cells evolves into a headway of n cells only if the
first car moves (with probability g) and the second car
brakes in the randomization step (probability p), i.e. the
total probability for this process is pgPn−1. Similarly, the
headway remains constant only if either both cars move
(probability p̄g) or both cars do not move (probability pḡ).
Finally, the headway is reduced by one, if only the second
car moves (probability p̄ḡ).

The probabilities Pn have to satisfy the normalization
conditions

1 =
∞∑
n=0

Pn, (16)

1

c
=
∞∑
n=0

(n+ 1)Pn. (17)

(17) is a consequence of the conservation of the number of
cars since each car with headway n occupies n+ 1 cells.
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Although the infinite system of non-linear equa-
tions (15) looks more difficult than those of the cluster
approximation, a solution possible using generating func-
tions [7]. For vmax = 1 one finds

P0 =
1

2p̄c

[
2p̄c− 1 +

√
1− 4p̄c(1− c)

]
,

Pn =
P0

p

(
p(1− P0)

P0 + p(1− P0)

)n
(n ≥ 1), (18)

and for the flow f(c, p) = cg again the exact solution is
reproduced.

For vmax = 2 one has two coupled systems of the
type (15), since one has to distinguish Pn(v = 1) and
Pn(v = 2) and the probabilities gα that a car moves
α = 0, 1, 2 cells in the next timestep. This system has
a similar structure as (15) and is given explicitly in [7]. It
can also be solved, but does not give the exact solution.

Note that the COMF approach assumes an infinite sys-
tem size. For a finite system of length L the largest head-
way that can appear is M := L − N . For vmax = 1 it
is possible to satisfy (16) and (17) by just changing the
equations for PM−1 and PM :

PM−1 = pgPM−2 + [p̄g + pḡ]PM−1 + [p̄ḡ − pg]PM ,

PM = pgPM−1 + [1− p̄ḡ + pg]PM . (19)

The equations for Pn with n < M − 1 are the same as
in (15). In order to derive (19) we have made the Ansatz
PM−1 = α1PM−2 +α2PM−1+α3PM and PM = β1PM−1+
β2PM and determined the coefficients αj and βj from (16)
and (17).

For vmax = 2 it appears that the equations for all n
have to be modified in order to satisfy (16, 17). This cor-
responds nicely to the qualitative difference of the cases
vmax = 1 and vmax > 2 and the appearance of long-ranged
correlations in the latter (see Sect. 3.4).

3.4 Garden of eden states

An important effect of the parallel dynamics is the exis-
tence of configurations which can not be reached dynam-
ically [8]. These states are called Garden of Eden (GoE)
states or paradisical states since one never gets back once
one has left [19]. An example for a GoE state is given
in Figure 5. Note that the velocity is equal to the num-
ber of cells that the car moved in the previous timestep.
For the configuration shown in Figure 5 this implies that
the two cars must have occupied the same cell before the
last timestep. Since this is forbidden in the NaSch model,
the configuration shown can never be generated by the
dynamics.

The simple mean-field theory presented in the pre-
vious section does not take into account the existence
of GoE states. One can therefore hope that by elimi-
nating all GoE states and applying mean-field theory in
the reduced configuration space (paradisical mean-field,
pMF) one will find a considerable improvement of the MF
results.

2

x x
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x x
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Fig. 5. A Garden of Eden state for the model with vmax ≥ 2.

Fig. 6. Comparison of the fundamental diagrams obtain from
MC simulations with the results of mean-field theory (MF) and
mean-field theory without GoE states (paradisical mean-field,
pMF).

For vmax = 1 all states containing the local configu-
rations (0, 1) or (1, 1) are GoE states, i.e. the cell behind
a car with velocity 1 must be empty4. This only affects
equation (1) and the equations for pMF theory read:

c0 = N (c0 + pd)c, (20)

c1 = N p̄cd, (21)

where the normalizationN ensures c0+c1 = c and is given
explicitly by N = 1/(c0 + d).

Solving (21) for c1 by using c0 = c− c1, one obtains c1
as a function of the density c:

c1 =
1

2

(
1−

√
1− 4p̄(1− c)c

)
(22)

(with p̄ = 1 − p). Since the flow is given by f(c) = c1
we recover the exact solution for the case vmax = 1 (see
Sect. 3.2).

It is interesting to note that for random-sequential dy-
namics MF theory is exact whereas for parallel dynamics
pMF is exact. Therefore the origin of the correlations is
the parallel update procedure. The existence of the GoE
states is responsible for the differences between parallel
and random-sequential dynamics. This is probably not
only true for the NaSch model, but is a rather general
property of CA models.

For vmax = 2 one has to take into account more GoE
states [8]. pMF is no longer exact, but it still leads to a
considerable improvement of the MF results (see Fig. 6).

4 Here we do not use the changed update order, so “0”
denotes a cell occupied by a car with velocity 0.
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4 “Physical” quantities

In this section we will use the analytical methods of
Section 3 to determine physical quantities of the NaSch
model, e.g. the fundamental diagram, cluster-size distri-
butions and correlation functions. These results will be
used in Section 5 to gain a better understanding of the
microscopic structure of the stationary state.

4.1 Fundamental diagram

For vmax = 1 the fundamental diagram in MF approxima-
tion is given by

fMF(c) = p̄c(1− c). (23)

As already mentioned in this case 2-cluster approximation,
COMF and pMF are exact and the flow is given

f(c, p) =
1

2

(
1−

√
1− 4p̄(1− c)c

)
(24)

(with p̄ = 1 − p). The fundamental diagram is symmet-
ric with respect to c = 1/2, reflecting the particle-hole
symmetry of the NaSch model with vmax = 1.

It is apparent from Figure 3 that MF considerably
underestimates the flow for intermediate densities. This
shows that correlations are important in this regime.
These correlations lead to an increase of the flow. One
finds a particle-hole attraction (particle-particle repul-
sion), i.e. the probability to find an empty site in front of
a car is enhanced compared to a completely random con-
figuration. In terms of cluster probabilities this particle-
hole attraction can be expressed more quantitatively as
P (1, 0) > P (1)P (0) = c(1− c).

As mentioned in Section 3.4, pMF yields the exact so-
lution for vmax = 1. This shows that there are no “true”
correlations apart from those due to the existence of GoE
states. The 2-cluster approximation and COMF then be-
come exact since both methods are able to identify all
GoE states.

For vmax > 1 one expects stronger correlations than for
vmax = 1 [6]. Indeed for vmax = 2 the difference between
the MF prediction

fMF(c) = c1 + 2c2 =
p̄(1 + p̄d2)dc

1− pd2
(25)

and the Monte Carlo data is even larger (see Fig. 4). How-
ever, pMF is not exact and therefore “true” correlations
exist. This is in agreement with the fact that MF is also
not exact for the NaSch model with vmax > 1 and random-
sequential dynamics.

The correlations can be taken into account systemati-
cally by the n−cluster approach which converges rapidly
with increasing n. Already for n = 4 one obtains a very
good agreement with the simulation results (Fig. 4). The
quality of COMF depends strongly on the value of p. In
general its prediction is between the 2– and 3–cluster ap-
proximation.

Fig. 7. Distribution of headways for different densities for
vmax = 1 and p = 0.5 (left) and vmax = 5 and p = 0.5 (right).

4.2 Headway distribution

Figure 7 shows the result for the distribution of headways,
Pn, for vmax = 1. Since in this case COMF is exact, we
can use the result (18). The headway distribution has just
one maximum, located at n = 1 for small densities and at
n = 0 for large c.

These two regimes also exist for higher velocities. At
high densities the headway distribution is maximal at
n = 0, whereas for low densities the maximum is found at
some value nmax > 0, where nmax depends on the density.
In addition, an intermediate density regime exists, where
distribution exhibits two local maxima, one at n = 0, cor-
responding to jammed cars, and one at nloc > 0, corre-
sponding to free flowing cars [20].

4.3 Correlation length

As an application of the cluster approximation we will
compute density-density correlations for vmax = 1 in
the following. Using occupation numbers nj = 0, 1 the
density-density correlation function is defined by

〈n1nr〉 =
∑
{nj}

′
n1nrP (n1, . . . , nL) (26)

where the prime indicates that the sum runs over all states
with fixed particle number N = n1 + · · ·+ nL.

In order to evaluate the sum in (26), it is convenient
to use a grand-canonical description. One introduces a
fugazity z which controls the average number of particles
〈nj〉 and sums over all configurations in (26). Using the
2-cluster approximation (12) – which is exact for vmax = 1
– the correlation function is given by

〈n1nr〉 =
1

Zgc

∑
{nj}

n1nrz
NP (n1, n2)P (n2, n3) · · ·

· · ·P (nL−1, nL)P (nL, n1) (27)

with N =
∑L
j=1 nj and the normalization

Zgc =
∑
{nj}

zN
L∏
j=1

P (nj , nj+1). (28)
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Introducing the transfer matrix

P̃ =

(
P (0, 0)

√
zP (0, 1)√

zP (1, 0) zP (1, 1)

)
(29)

this can be written succinctly as

Zgc = Tr P̃L, (30)

〈n1nr〉 =
1

Zgc
Tr
(
QP̃r−1QP̃L−r+1

)
, (31)

with the matrix Q(n1, n2) = n1P̃(n1, n2).
The correlation length ξ can be obtained from the

asymptotic behaviour (r → ∞) of the correlation
function

〈n1nr〉 − c
2 ∝ e−r/ξ (32)

where c = 〈nj〉 is the (average) density of cars. ξ is de-

termined by the ratio of the eigenvalues λ± of P̃ (with
|λ+| ≥ |λ−|):

ξ−1 = ln

∣∣∣∣λ−λ+

∣∣∣∣ . (33)

The explicit expression for ξ can be obtained from

λ± =
1

2

[
A±

√
A2 + 4p̄z[P (1, 0)]2

]
, (34)

with A = P (0, 0) + zP (1, 0). (35)

P (a, b) are the cluster probabilities given in (14). The
fugazity z can be related to the density c via the equa-
tion c = 〈nj〉. Using an expression analogous to (31) one
finds

cλ+ =
B
{

[P (1, 0)]2 +BP (1, 1)
}

[P (1, 0)]2 + 1
zB

2
, (36)

with B = λ+ − P (0, 0). (37)

For fixed p, ξ is maximal for c = 1/2 which corresponds to
z = 1. ξ(c = 1/2) diverges only for p→ 0. In that case one
finds that ξ(c = 1/2) ∝ p−1/2. Monte Carlo simulations
show that the same behaviour still occurs (at density c =
1/(vmax + 1)) for vmax > 1 [21]. Therefore, the correlation
function already gives an indication that the system is
not critical for p > 0. The simulations show that there is
no qualitative difference between the cases vmax = 1 and
vmax > 1 as far as the phase transition is concerned [21].

The above results demonstrate that, although the 2-
cluster approximation is exact, not all correlation func-
tions are of finite range.

4.4 Jam-size distribution

For a better understanding of the differences between the
cluster approximation and COMF we calculate the distri-
bution of jam-sizes using these methods. Let Cn be the

probability to find a (compact) jam of length n, i.e. n
consecutive occupied cells.

In COMF, Cn is proportional to (1− P0)P0 · · ·P0(1−
P0) = (1−P0)2Pn−1

0 . The number of jams is proportional
to 1− P0 so that one finds

Cn = (1− P0)Pn−1
0 . (38)

This distribution is purely exponential and Pn ≥ Pn+1 for
all n. Therefore COMF is not able to describe clustering
or phase separation, i.e. situations where jams with more
than one car dominate. Clustering implies that there are
correlations between gaps which are completely neglected
in COMF.

In 2-cluster approximation, Cn is proportional to
P (0|1)P (1|1) · · ·P (1|1)P (1|1)P (1|0) where we have used
the conditional probabilities (10). and the different
update-ordering R2-R3-R4-R1. Note that the case n = 1
has to be treated separately, C1 ∝

∑vmax

v=1 P (0|v)P (v|0).
The number of jams is obviously given by NJ =∑vmax

v=1 P (v|0) and one obtains

C(2)
n =

1

NJ
P (0|1)P (1|1)n−2P (1|1)P (1|0) (n ≥ 2),

C
(2)
1 =

1

NJ

vmax∑
v=1

P (0|v)P (v|0). (39)

C
(2)
n decays exponentially for n ≥ 2, especially one has

Cn+1 ≤ Cn. For the m-cluster approximation one can de-
rive similar expressions. Since here clusters of size m are
treated exactly it is now possible to find the maximum of
the jam-size distribution somewhere between n = 1 and
n = m. For n > m the jam-size probability decays expo-
nentially due to the mean-field-like self-consistent coupling
of the cluster to the rest of the system.

4.5 Further applications

We briefly mention other results which have been obtained
analytically using the cluster approximation. In [20] the
distributions of gaps and the distance between jams have
been calculated for vmax = 1 using the 2-cluster approx-
imation. For the gap distribution one recovers the (ex-
act) result which has been derived in Section 3.3 (see
Eq. (18)). For the calculation of the distribution of gaps
between jams one defines every vehicle with velocity 0 to
be jammed. The distance between two jams is then given
by the distance between a car with velocity 0 and the next
car with velocity 0. In [22] the probability P(t) of a time
headway t has been investigated. This quantity is defined
in analogy to measurements on real traffic where a de-
tector registers the time interval between the passing of
consecutive cars. For a discussion of the behaviour of the
time-headway and the jam-gap distribution in the NaSch
model we refer to [20,22]. These quantities are also very
useful for studying variants of the NaSch model which
exhibit phase separation [23].
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5 Microscopic structure of the stationary
state

In the following we demonstrate that the microscopic
structure of the stationary state changes qualitatively with
the braking parameter p. For illustration we first discuss
the deterministic limits p = 0 and p = 1. After that the
behaviour for randomizations 0 < p < 1 is discussed. How-
ever, we concentrate on the limits p � 1 and 1 − p � 1.
Finally, in Section 5.4 we compare COMF and cluster ap-
proximation. Here we focus on the ability to reproduce the
correct microscopic structure of the stationary state.

5.1 p = 0

In the absence of random decelerations the velocity of the
vehicles is determined solely by its headway. For densities
c ≤ 1/(vmax +1) all headways can be larger than vmax and
therefore the cars move with velocity vmax in the station-
ary state. This is no longer possible for c > 1/(vmax + 1).
Here the velocity of the cars is determined by the average
headway d̄ available, d̄ = (L − N)/N = (1 − c)/c. The
fundamental diagram is therefore given by

f(c) =

{
vmaxc for c ≤ 1/(vmax + 1),

1− c for c > 1/(vmax + 1).
(40)

Note that in general the stationary state is not unique,
but determined completely by the initial condition.

For p = 0 there is no tendency towards clustering [24].
Overreactions are not possible and there is no spontaneous
formation of jams. In this sense the case p = 0 is unrealis-
tic. The dynamics is completely determined by “geomet-
rical” effects, since the behaviour of the cars only depends
on the available average headway. There is no “attractive”
interaction between the cars and therefore no mechanism
for clustering.

5.2 p = 1

In the case p = 1 the dynamics is again deterministic.
However, it is very different from that of a model with
maximum velocity vmax − 1. The point that we want
to stress here is the existence of metastable states. For
vmax = 2 and density c = 1/3 the state ..1..1..1.. (here “.”
denotes an empty cell and “1” a cell occupied by a car
with velocity 1) is stationary with flow f(c = 1/3) = 1/3.
On the other hand, the state ..0..0..0.. is also stationary
with vanishing flow, since a standing car will never start
to move for p = 1.

For densities c > 1/3 all stationary states have vanish-
ing flow. Here at least one car has only one empty cell in
front. Therefore after step R2 this car has velocity 1 and
will then decelerate to velocity 0 in step R3. After that it
will never move again.

For densities c ≤ 1/3 stationary states with non-zero
flow exist. These are not stable under local perturbations,
i.e. stopping just one car leads to a complete breakdown
of the flow. In this sense these states are metastable.

Fig. 8. Fundamental diagram for vmax = 2 and p = 0.1: Com-
parison of simulation data (•) with the 2-cluster (· · · ) and 3-
cluster results (—) (left) and with COMF (—) (right).

Starting from random initial conditions, the
metastable states have a vanishing weight in the
thermodynamic limit, since already one standing car
leads to a zero-flow state.

Note that the metastable states at p = 1 do not exist
for vmax = 1. In that sense the difference between vmax = 1
and vmax > 1 becomes most pronounced at p = 1.

The deceleration introduces a kind of “attractive” in-
teraction between the cars which can lead to the formation
of jams. However, these jams are typically not compact,
but of the form .0.0.0.0.. A car approaching a standing
car adapts its velocity in step R2 such that it reaches the
cell just behind the standing vehicle. In step R3 it then
decelerates further and so there will be a gap of 1 between
the cars.

5.3 0 < p < 1

In the limit p → 0, the fundamental diagrams obtained
from COMF and the 3-cluster approximation become ex-
act, in contrast to the 2-cluster approximation (see Fig. 8).
Even for values of p ≈ 0.1 there is an excellent agreement
between the fundamental diagrams obtained analytically
and the Monte Carlo simulations. Since “realistic” values
of p are in the region p ∼ 0.1−0.2, the approximations are
indeed applicable in the relevant parameter regime.

Figure 9 shows a comparison of the computer simula-
tions with the COMF results for the probabilities gα that
a car moves α sites. Although there is an excellent agree-
ment for the fundamental diagram f(c) = c(g1 + 2g2) at
p = 0.1 (see Fig. 8), there are considerable deviations at
intermediate densities for the individual values of g1 and
g2. This is somewhat surprising and indicates that COMF
is not exact in the limit p→ 0, i.e. that there are still cor-
relations between the headways. This will be discussed
further in Section 5.4.

On the other hand, the 3-cluster probabilities obtained
from our simulations show a very good agreement with the
results of the 3-cluster approximation (Fig. 10). This sug-
gests that the 3-cluster approximation is asymptotically
exact for p→ 0.

The limit p → 1 is difficult to investigate numeri-
cally. Preliminary results show that COMF is not exact
in this limit. The cluster approximations give a much bet-
ter agreement with Monte Carlo simulations, but it is not
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Fig. 9. Comparison of the COMF prediction (· · · ) with com-
puter simulations (—) for the probabilities gα that a car moves
α sites. g0 can be obtained from g0 = 1− g1− g2. The braking
parameter is p = 0.1 and vmax = 2.

Fig. 10. Comparison of the 3-cluster probabilities
P (nj, nj+1, nj+2) obtained from computer simulations (—)
and the 3-cluster approximation (· · · ) for p = 0.01. nj is the
occupation number of cell j. Note that P (1, 0, 0) = P (0, 0, 1)
and P (1, 1, 0) = P (0, 1, 1).

clear yet whether it becomes exact or not. However one
can expect a tendency towards phase seperation due to
“attractive” interactions beween the cars. One stopped
car can induce jams with a rather long lifetime since
the restart probability of the first car is rather small. This
tendency can already be observed in the cluster probabil-
ities for p = 0.75 (see Fig. 11). The distributions become
broader and especially at small densities the probabilities
P (0, 1, 1) and P (1, 1, 1) which characterize the clustering
are enhanced compared to the limit p→ 0.

5.4 Cluster approximation vs. COMF

In this section the results of the cluster approximation
and COMF in special limits are compared. As already

Fig. 11. Same as Figure 10, but for p = 0.75. Here only the
results of the computer simulations are shown.

mentioned, both methods yield the exact solution for
vmax = 1. This is related to the fact that paradisical mean-
field is exact in that case and both methods are able to
identify all GoE states. For vmax = 2 the situation is dif-
ferent. Here all three methods are only approximative.

The deviations between COMF results and the Monte
Carlo simulations can be understood by looking more
closely at the microscopic structure of the stationary state.
For p = 0 there are three different stable structures: 00000,
.1.1.1., and ..2..2....2...2.... The last structure comprises
all configurations where all cars have velocity vmax and
at least vmax empty cells in front. For fixed density there
are many configurations which produce the same flux. In
a large system these configurations are mostly made up
of combinations of the three stable structure (with small
transition regions). For p > 0, .1.1.1. is the most un-
stable configuration. It tends to separate into 00000 and
2..2....2...2 under fluctuations of the headways. COMF is
not able to account for these fluctuations since headways
are assumed to be independent. Therefore the weight of
the configurations .1.1.1. – and therefore g1 – is overesti-
mated. In the 3-cluster approach, on the other hand, the
headways are not independent. Therefore it is able to iden-
tify the dominating local structure for p→ 0 correctly.

COMF is not able to describe the “attractive” part of
the interaction properly. This can also be seen in the jam-
size distribution (see Sect. 4.4). COMF always predicts a
strictly monotonous distribution (38), whereas the cluster
approximation in principle is able to describe situations
where the jam-size distribution has a maximimum at some
(small) value of n > 0.
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6 Summary

Although cellular automata are designed for efficient
computer simulation studies, an analytical description is
possible, although difficult. We have presented here four
different methods which can be applied to CA models of
traffic flow. The first approach, a simple mean-field theory
for cell occupation numbers, is insufficient since the im-
portant correlations between neighbouring cells (e.g. the
particle-hole attraction) are neglected. We therefore sug-
gested three different improved mean-field theories. These
approaches take into account certain correlations between
the cells. The simplest method is the so-called “paradisical
mean-field” theory which is based on the observation that
certain configurations (Garden of Eden states) can never
be generated by the dynamical rules due to the use of par-
allel dynamics. The cluster approximation, on the other
hand, treats clusters of a certain size exactly and cou-
ples them in a self-consistent way. Therefore short-ranged
correlations are taken into account properly. In contrast,
car-oriented mean-field theory is a true mean-field theory,
but here one uses a different dynamical variable, namely
the distance between consecutive cars. In that way, certain
correlations between cells are taken into account.

All three improved MF theories become exact for
vmax = 1. For larger values of vmax they are just ap-
proximations. In principle, the cluster approximation and
COMF (in combination with a cluster approach) can be
improved systematically. This is, however, very cumber-
some.

An interesting observation is that the quality of the
approximation depends strongly on the value of p. This
indicates that the physics changes with p, contrary to
common believe. Evidence for this scenario comes from
the microscopic structure of the stationary state. In the
limit p→ 0 it is dominated by repulsive interactions which
tend to align the vehicles at a headway of at least vmax

cells. On the other hand, for p → 1 there is a tendency
towards phase seperation. Cars which had to stop due to
a fluctuation will stand for a rather long time and thus
lead to the creation of jams. In the deterministic case this
even leads to the existence of metastable states.

In [25] it has been suggested that the behaviour of
the NaSch model is governed by two fixed points, namely
p = 0 and vmax = ∞. Our investigations show that it
might be more reasonable to consider p = 0 and p = 1
as fixed points in order to understand the behaviour for
fixed vmax. For p = 0 there is a continuous phase transition
from laminar flow to a congested phase (see [21,25] and
references therein) at c = 1/(vmax + 1). This transition
turns into a crossover at 0 < p < 1 [21,25]. It would be
desirable to investigate the behaviour of this transition
close to p = 1 in more detail.

The methods presented here can also be used for
other CA models, e.g. variants of the NaSch model
[22,23,26–29]. The investigation of the NaSch model has
led to a better understanding of their advantages and lim-
itations so that it is easier to choose the approach most
suitable for a given problem.

I would like to thank Michael Schreckenberg, Ludger Santen,
Debashish Chowdhury and Dietrich Stauffer for valuable dis-
cussions and useful suggestions. This work has been performed
within the research program of the SFB 341 (Köln–Aachen–
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